博客
关于我
VTK:模型之Finance
阅读量:382 次
发布时间:2019-03-05

本文共 453 字,大约阅读时间需要 1 分钟。

VTK:模型之Finance

描述

在VTK中构建金融模型时,首先需要选择合适的因变量和自变量。这一选择实际上是将多维数据映射为非结构化的点数据集。例如,本示例中选择了MONTHLY_PAYMENT、INTEREST_RATE和LOAN_AMOUNT作为(x, y, z)点坐标,同时使用TIME_LATE作为标量值。这种映射方式涵盖了六个变量,但我们暂时忽略了其他两个变量。

在实现过程中,我们采用了vtkGaussianSplatter算法进行splatting操作,将非结构化点数据转换为体积数据集。随后,我们对数据进行了等值面提取。为了更好地展示上下文,我们对数据进行了两次喷溅操作。第一次喷溅输出了全部人口数据,以灰色/线框形式在图中显示。第二次喷溅则专注于重点数据,便于在图中突出显示。

这种方法通过GaussianSplatter算法,将复杂的金融数据转化为直观的体积可视化,从而更直观地分析模型中的变量关系。特别是在分析TIME_LATE对各项指标的影响时,这种方法提供了强大的可视化支持。

转载地址:http://gonwz.baihongyu.com/

你可能感兴趣的文章
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIO ByteBuffer实现原理
查看>>
Nio ByteBuffer组件读写指针切换原理与常用方法
查看>>
NIO Selector实现原理
查看>>
nio 中channel和buffer的基本使用
查看>>
NIO基于UDP协议的网络编程
查看>>
NISP一级,NISP二级报考说明,零基础入门到精通,收藏这篇就够了
查看>>
Nitrux 3.8 发布!性能全面提升,带来非凡体验
查看>>
NI笔试——大数加法
查看>>
NLP 基于kashgari和BERT实现中文命名实体识别(NER)
查看>>
NLP学习笔记:使用 Python 进行NLTK
查看>>
NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
查看>>
NLP:使用 SciKit Learn 的文本矢量化方法
查看>>
Nmap扫描教程之Nmap基础知识
查看>>
Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
查看>>
NMAP网络扫描工具的安装与使用
查看>>
NMF(非负矩阵分解)
查看>>
NN&DL4.1 Deep L-layer neural network简介
查看>>